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To perform the convolution correctly, it is 
necessary to calculate the reflected intensity in the 
same way as for the Gaussian function. Fig. 6 
describes the results of the calculated reflectivity of 
a silicon wafer of width 35 mm in the case of a Q~ 
scan along the ridge. The insert shows on a linear 
scale how the geometrical correction gives a good 
estimation at small Qz of the measured intensity. The 
computation was performed with the matrix tech- 
nique (Born & Wolf, 1964) with help of Matlab soft- 
ware (Gibaud & Vignaud, 1993). The electron density 
depth profile for this silicon wafer can be separated 
from the calculation, showing the presence of a layer 
of thickness 17.2/~ at the surface of the bulk silicon. 
Typical parameters used in the calculation are repor- 
ted in Table 1. The low electron density of the surface 
layer reveals that it is probably related more to water 
deposition than to an oxide deposition. In conclusion, 
the above corrections strongly depend upon the line 
shape of the direct beam. When slits and a graphite 
analyzer (low-resolution mode) are used, the line 
shape is Gaussian but, in the case of a high-resolution 
triple-crystal diffractometer (Ge monochromator- 
crystal-Ge analyzer), the beam line shape is Lorent- 
zian, so a Lorentzian function must be used to per- 
form the corrections. This is illustrated in Fig. 7, 
which represents the absolute reflectivity of a niobium 
film on top of a sapphire substrate. The insert shows 
the observed and corrected calculated reflectivities. 

In this case, the contamination by the direct beam is 
not a problem because the FWHM of the direct beam 
in this high-resolution mode is only 0.01 ° (cf. 0.1 ° for 
the low-resolution mode). The geometrical correction 
is in this case very severe because the sample was 
only 10 mm wide and the beam 200 lxm thick; this is 
clearly illustrated by the fact that the reflectivity was 
far less than 1 at Q = Q~. 

The authors wish to thank G. Ripault for technical 
assistance during the measurements and T. Nicolai" 
for stimulating discussions. One of us (AG) would 
like to thank R. A. Cowley for helpful discussions 
and for providing the facilities at the Clarendon 
Laboratory, where the experiments concerning the 
Nb-sapphire system were performed and where the 
system was grown. 
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Abstract 

Up to 100 point charges have been distributed on the 
surface of a sphere such that the configurations dis- 
play T and O symmetry as well as being a minimum, 
global or local, with respect to the Coulombic 
potential. 

Introduction 

The symmetry adopted by N point charges on the 
surface of a sphere such that the Coulombic potential 
is a minimum has been determined by several inves- 
tigators: Ashby & Brittin (1986); Edmundson (1992); 
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Erber & Hockney (1991); Frickel & Bronk (1987); 
Melnyk, Knop & Smith (1977); Rafac, Schiffer, 
Hangst, Dubin & Wales (1991); Weinrach, Carter, 
Bennett & McDowell (1990); Wille (1986). 

Table 1 lists the values of N when the arrangements 
display tetrahedral or octahedral symmetry. This 
paper describes which other values of N can display 
T and O symmetries and at the same time produce 
a local minimum in terms of the Coulombic potential. 

Tetrahedral configurations 

The tetrahedron differs from the other Platonic 
solids in that it is its own dual and has no centre of 
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Table 1. Global minima with T and 0 symmetry 
N S y m m e t r y  F 6 p p l  c o n f i g u r a t i o n  R e f e r e n c e s  

4 Td 1,3 (a), (b), (c) 
6 Oh I, 4, 1 (a), (b), (c) 

16 T 1, 35 (a), (b), (c), (d) 
22 Ta l, 32, 6, 32 (a), (b), (c) 
24 O 46 (a), (b), (c) 
28 T 1, 39 (a), (b), (c) 
40 ira I, 32, 6, 32, 6, 3, 6, 32 (a), (b) 
44 Oh 43, 8, 4, 8, 4 (a), (b) 
46 T I, 315 (a) 
48 O 4 t2 (a), (b) 

References: (a) Edmundson  (1992); (b) Weinrach et al. (1990); (c) Frickel & 
Bronk (1987); (d) Ashby & Brittin (1986). 

inversion. T symmetry has twelve symmetry oper- 
ations: 

3xC2,  4×C3,  4xC~3 and l x E .  

Ta symmetry includes six mirror planes, three 
through each vertex of the tetrahedron, whilst Th has 
only three mirror planes together with an inversion 
centre. 

If an extra point is added randomly to one of the 
equilateral-triangular facets of the tetrahedron then 
two more points are required to conserve the threefold 
rotation axis of that facet; because there are four such 
facets, the total number of extra points added is 
twelve. Thus, 

N = 4 +  12a, series 7"1, 

describes the number of apices that can have T sym- 
metry of the form where there are the four original 
tetrahedral positions and where ' a '  describes the 
number of unique apices in the configuration. The 
series 4, 16, 28, 40 is very noticeable in Table 1. 

One can envisage a second series, created by adding 
apices at the mid-points of each edge of the basic 
tetrahedron or two points such that the twofold rota- 
tion about the mid-point is retained. Thus, 

N =  4 + 12a + 6b, series 7"2, 

where b is the number of points along each edge. If 
b=  1 and a =  1 and 3, then one obtains N = 2 2  and 
46, which are also in Table 1. 

When the original four points of the basic tetra- 
hedron are removed, the above two series become 

N = 12a, series 7"3; 

N = 1 2 a + 6 b ,  series T4. 

If the inverses of the original apices are included, 
then the two equations are 

N = 8 + 12a, series 7"5, 

N = 8+ 12a +6b, series T6. 

Thus, the general equation becomes 

N =  12a + 6b + 4c, 

where c = 0, 1 or 2. 

To include Th symmetry, it was expected that the 
factor of twelve would be increased to 24 to include 
the inverse apices and c would be made equal to two. 

Octahedral configurations 

The simple O group has 24 operations: 

3 x C 4 ,  3 x C 4  z, 3 x C  3, 4 × C 3 ,  

4 x C ~ ,  6xC2  and l x E ,  

whilst the Oh group includes nine mirror planes. The 
configurations can be formulated from either an 
octahedron or a cube. For the case of a cube, each 
square facet has a fourfold axis and so four points 
are required to conserve the symmetry of the facet. 
The six facets of the cube require a total of 24 points. 
For the case of an octahedron, each equilateral 
triangle requires three points, again making 24, for 
the eight facets. Thus, 

N = 2 4 a ,  series O1. 

By including the original points of the octahedron 
and cube, respectively, two additional series are pro- 
duced: 

N =  24a + 6, series 02; 

N =  24a + 8, series 03. 

Two further series can be produced if the mid-point 
of each edge of the original figure is used: 

N = 24a + 6 + 12b, series O4; 

N = 2 4 a + 8 + 1 2 b ,  series Os. 

Other combinations can be used to produce three 
more series: 

N = 6 + 8 + 1 2 b + 2 4 a ,  

N = 24a + 12b, 

N = 6 + 8 + 2 4 a ,  

the general equation becoming 

series 06; 

series 07; 

series 08; 

N = 24a + 12b + 6c + 8c', 

where c and c' are either 0 or 1, depending on whether 
apices occur at the corners of the basic cube or of 
the octahedron. 

Method 

In a previous paper (Edmundson, 1992), the 
minimum potential was located by making explora- 
tory moves for each point in an iterative process. In 
the forcing of the system to retain T symmetry, groups 
of twelve points are moved simultaneously, whilst, 
with O symmetry, each group consists of 24 points. 
Thus, for N = 3 4 ,  with T symmetry, one requires 
a = 2 ,  b = l  and c = l .  This means that the four 
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Table 2. The basic tetrahedral coordinates 

Apex number x y z 

1 0 1 0 
2 81"2/3 - 1/3 0 
3 - 8v2/6 - 1/3 (2/3) ~'2 
4 - 8 t,2/6 - 1/3 - (2/3) v2 

Table 3. The basic octahedral coordinates 

Apex number x y z 

1 0 1 0 
2 1 0 0 
3 0 0 1 
4 - 1  0 0 
5 0 0 - I  
6 0 - I  0 

Table 4. Data for tetrahedral configurations 

N a b c Potential S A MP FSppl arrangement 
4 0 0 1 3.674235 T a 1 2 1, 3 
6 0 1 0 9.985281 O h 1 0, 4 3, 3 
8 0 0 2 19.740774 O h 1 0, 4 1, 32, 1 

10 0 1 1 33.467677 T d 4 1, 3 a 

12 1 0 0 49.165253 I h 1 4 1, 52, 1 or 3'* 
14 0 1 2 69.342378 O h 1 4, 6 1, 3'*, 1 
16 1 0 1 92.911655 T 3 1, 35 
18 1 1 0 120.643750 0 h 2 4, 8 32, 6, 32 
20 1 0 2 151.798621 I h 1 4 54 or 1, 3, 62, 3, I 
22 1 1 1 185.287536 T d 3 6 1, 32, 6, 33 
24 2 0 0 223.347074 O 3 38 
26 1 1 2 266.149838 O h 1 8, 8 1, 33, 6, 33, 1 
28 2 0 1 310.491542 T 5 1, 39 
30 2 1 0 359.831047 O 3 3 t° 
32 2 0 2 412.261275 I h 1 8 I, 56, 1 or [1, 32, 6,_312 
34 2 1 1 470.157371 T 1, 3 tl 
36 3 0 0 529.282064 T 7 312 
38 2 1 2 594.276246 O 3 1, 312, 1 
40 3 0 1 660.675279 T d 5 8 1, 32, 6, 32, 6, 3, 6, 32 
42 3 1 0 732.256241 I h 2 8 32, 6, 32, 6, 32, 6, 32 
44 3 0 2 807.174263 O h 3 4, 10 43, 8, 4, 8, 43 
46 3 1 1 886.167114 T 8 1, 315 
48 4 0 0 968.713455 O 5 316 
48 3 2 0 970.043142 T 9 3 tt ,  6, 33 
50 3 1 2 1055.854669 T h 5 8 1, 316, 1 
52 4 0 1 1145.447334 T 9 I, 317 
54 4 1 0 1239.794851 O 5 318 
56 4 0 2 1338.453609 T 9 1, 3 ts, i 
58 4 1 1 1439.105779 T a 8 8 1, 6, 32, 63, 3, 6, 32, 6, 32 
60 5 0 0 1543.844655 T 1 ! 320 
62 4 I 2 1653.410295 O 5 1, 32°, 1 
64 5 0 1 1765.823383 T 11 1, 321 
66 5 1 0 1884.045965 T 12 322 
68 5 0 2 2003.232343 T 11 1, 322 
70 5 1 1 2127.128180 T d 8 10 1, 32, 6, 32, 62, 3, 62, 3, 6, 

32, 6, 3 
72 6 0 0 2255.131117 O 7 324 
72 5 2 0 2255.001521 T a 10 8 3, 6, 32, 6, 3, 62, 32, 64, 32 
74 5 1 2 2388.572067 T 12 1, 32'*, i 
76 6 0 1 2523.113188 T 13 1, 325 
78 6 1 0 2662.046475 T h 8 12 326 

Table 5. Data for octahedral configurations 

N a b c c' Potential S A MP F/SpplArrangement 
6 0 0 1 0 9.985281 O h 1 2, 4 1, 4, 1 

8 0 0 0 I 19.740774 O h 1 0, 4 42 

12 0 1 0 0 49.341688 0 h 2 2, 4 43 

14 0 0 1 1 69.342378 O h 1 4, 6 I, 43, 1 

18 0 1 1 0 120.643750 O h 2 4, 8 1, 4, 8, 4, I 

20 0 1 0 1 155.231453 O h 4, 6 4 s 

24 1 0 0 0 223.347074 O 3 46 

26 0 1 1 1 266.149838 O h 1 8, 8 1, 42, 8, 42, 1 

30 1 0 1 0 359.831047 O 3 1, 4./, 1 

32 1 0 0 1 412.312762 O h 3 8, 8 43, 8, 43 

36 1 1 0 0 531.911333 O h 4 4, 6 42, 8, 4, 8, 42 

38 1 0 1 1 594.276246 O 3 1, 49, 1 

42 1 1 1 0 733.022273 O h 3 8, 8 1, 42, 83, 42, 1 

44 l 1 0 1 807.174263 O h 3 4, 10 43, 8, 4, 8, 43 

48 2 0 0 0 968.713455 O 5 412 

50 1 1 1 1 1056.089367 O h 3 8, 12 1, 43, 83, 43, 1 

54 2 0 1 0 1239.794851 O 5 1, 413, 1 

56 2 0 0 1 1338.466334 O 5 414 

60 2 1 0 0 1543.902037 O h 5 6, 12 43, 8, 4, 12, 4, 8, 43 

62 2 0 1 1 1653.410295 O 5 1, 415, 1 

66 2 1 1 0 1884.526276 O 6 1, 47, 8, 47, 1 

68 2 1 0 1 2006.704671 O 6 4 I./ 

72 3 0 0 0 2255.131117 O 7 4 Is 

74 2 1 1 1 2390.845398 O 1, 48, 8, 48, 1 

78 3 0 ! 0 2665.518404 O h 6 10, 12 [1, 42, 82, 421212 

80 3 0 0 1 2805.577601 O 7 420 

84 3 1 0 0 3105.565051 O 8 421 

86 3 0 1 1 3258A92973 O h 5 12, 14 [1, 42, 8, 42, 8, 41212 

90 3 1 1 0 3579.519192 O 8 1, 4 I°, 8, 4 I°, 1 

92 3 1 0 1 3747.353918 O 8 423 

96 4 0 0 0 4089.893493 O h 7 8, 16 [43, 8, 42, 8, 41216 

98 3 1 1 1 4269.167832 O 8 1, 4 It, 8, 4 It, 1 

Generation of the twelve tetrahedral apices 

The coordinates o f  the basic tetrahedron were set 
up as s h o w n  in Table 2. If  an extra point (x, y, z) is 
now added, then, to conserve the threefold symmetry 
around apex 1, the fo l lowing  matrix will generate the 
two aditional points: 

c o s a  0 sinc~ 

0 1 0 

- s i n a  0 c o s a  

matrix A, 

with a = 2~r/3 and 4zr/3.  The three points are now 
rotated in such a way that apex 1 is transposed to 

80 6 0 2 2805.577601 O 7 1, 326, 1 apex 2; this is done by a combinat ion of  two rotations 
82 6 1 1 2952.996155 T a 9 12 1, 33, 6, 3, 62, 3, 6, 3, 62, 3, 

6, 32, 6, 32 about the major axes, First, a rotation using matrix 
84 7 0 0 3104.331188 T h 8 12 328 A with a = zr/3 about the y axis; second, a rotation 
86 6 1 2 3258.492973 O h 5 12, 14 [1, 3 z, 6, 3 z, 6, 3, 6 z, 3]2 
88 7 0 1 3416.736916 T 15 I, 329 about the z axis using the matrix 
90 7 I 0 3579.519192 O 8 314, 6, 3 TM 

92 7 0 2 3745.618739 I,. 3 12 [1.53 , 10, 52 , 1012 COSfl sin/3 01 
94 7 1 1 3916.229550 T 16 1, 331 
96 8 0 0 4089.190491 T h 11 8 332 - s i n / 3  cos/3  matrix B, 
96 7 2 0 4091.323078 T 17 324, 6, 3 ~ 
98 7 1 2 4269.274356 T 16 1, 332, I 0 0 

100 8 0 1 4448.350634 T 17 1, 333 

with cos fl = - 1 / 3 ,  the angle subtended at the centre 
original apices o f  the tetrahedron, together with the by any two of  the tetrahedral points.  The three trans- 
six mid-points,  are not moved,  whilst two separate formed points are now rotated using matrix A, with 
apices, together with their accompanying eleven a - - 2 z r / 3  and 47r/3, to generate the remaining six 
apices, are moved in an exploratory manner,  points.  
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Generation of the 24 octahedral apices 

The coordinates of the basic octahedron were set 
up as shown in Table 3. The additional new point is 
rotated about the fourfold y axis using matrix A, to 
produce four points. These points are then rotated 
around the fourfold x axis using 

1 0 0 [ 
0 cos 31 sin 3/[, mat r ixC.  

0 - s in  3' cos 3' 

The last eight points are generated by rotating four 
suitable coordinates around the z axis using matrix 
B. The calculations were performed using Fortran 
with double-precision arithmetic on an IBM-clone 
286 computer. 

of mirror planes. Where O symmetry occurs in Table 
4, the Fibppl arrangement is given with respect to the 
threefold axis. Square brackets are sometimes used 
in the F/Sppl description as a shorthand. Thus, a 
configuration of A.B.A' is reduced to [A]2B, where 
A and B can be a string of numbers several elements 
in length and A' is the reverse of A. Fig. 1 shows the 
view down the threefold axis for the tetrahedral 
configurations of Table 4 for N =  22 to 70. The N = 34 
system is not included because it is not possible to 
determine a unique set of triangular facets. Fig. 2 is 
the same as Fig. 1, except the view is up the threefold 
axis. Fig. 3 shows both views for the tetrahedral 
arrangements for N = 72 to 98, with N = 74 and 96 
not shown. Fig. 4 shows the octahedral configurations 
from Table 5 for N = 26 to 98, with N = 74 not shown. 

Results 

The results of the calculations are shown in Table 4 
for the tetrahedral arrangements and in Table 5 for 
the octahedral arrangements. S denotes the symmetry 
of the configuration, A denotes the number of 
differently shaped triangles in the arrangement and 
MP is the number of apices in the mirror plane. For 
Oh symmetry, the two numbers refer to the two kinds 

Discussion 

Ta series 

This series produces the basic T symmetry, except 
for N = 4 and 40, which are Ta; the first four members 
are global minima. The number of differently shaped 
triangles, A, for the T members of the series, is given 
by 

A = 2 a + l .  

Fig. 1. Tetrahedral configurations for N=22 to 70, with N= 34 not shown. View down the threefold axis. 
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A similar expression for the Ta series is complicated 
by the number  of facets in the mirror planes. 

T2 series 

This series again produces T or Td configurations 
with global minima for N = 22 and 46. A for the T 
symmetry is given by 

A = 2 a + 2 .  

7"3 series 

O arrangements are produced for N = 24 and 48, 
which are global minima with square facets. The 
N = 72 arrangement has square facets but it is only 
a local minimum. For most of  the tetrahedral series, 
it is possible to produce different tetrahedral arrange- 
ments by describing the 'a '  value in the general 
equation and increasing the 'b' value correspond- 
ingly. Thus, for N = 24 with a = 2, b = 0 and c = 0, a 
potential of 223.347074 is produced; whilst with a = 1, 
b = 2 and c = 0, a potential of 224.062223, which has 
Td symmetry, is obtained. This rearrangement is 
equivalent to forcing two points to reside along each 
edge of the basic tetrahedron but still retaining the 
twofold rotation axis about the mid-point of the edge. 
For N = 72, a lower potential of 2255.001521 with Td 

symmetry is obtained using this technique. Th sym- 
metries are obtained for both N = 84 and 96. Forcing 
the 7"3 series into N = 24a produces a further arrange- 
ment having Oh symmetry with a F/Sppl configuration 
of [3, 6, 3, 63, 3, 6, 3, 6]2 and a potential of 
4093.321826. 

T4 series 

This series in the main produces O symmetry, 
where it occurs, 

A = a + l .  

The N = 18 member is essentially the cuboctahedron 
with the six square faces capped. Similarly, the N = 30 
configuration is basically the snub cube with its six 
square faces capped, whilst the N = 42 member is the 
icosidodecahedron with the twelve pentagons 
capped. 

The N = 78 member has apices at the intersection 
of the three Th mirror planes. There are eight other 
apices per mirror plane, making a total of 30 
altogether. The remainder, 78 - 30 = 48, consists of two 
unique apices together with their accompanying 
points and inverses. This Th configuration is probably 
a global minimum; a D 3 system has a potential of 
2662.04721 (Edmundson,  1991). 

Fig. 2. Tetrahedral configurations for N = 22 to 70, with N = 34 not shown. View up the threefold axis. 
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7"5 series 

Both the T3 and T4 series have produced Th sym- 
metry for N = 78, 84 and 96, without the need for 
taking into account the number of apices in the mirror 
planes or whether two mirror planes share common 
apices. In this series, the inverses are included to aid 
in forcing Th symmetry. However, no Th configur- 
ations are produced. The dodecahedron is produced 
for N = 20, whilst the arrangements for N = 32, 44 
(Edmundson, 1992; Weinrach et al., 1990; Erber & 
Hockney, 1991) and 92 (Edmundson, 1991) are all 
global minima. 

T6 series 

The N = 26 arrangement is the dual of the truncated 
cuboctahedron, the hexakis octahedron, distorted so 
the apices fit on the sphere. The internal angles of 
the triangular facets of the true dual are 55.025, 37.775 
and 87.200, whilst those of the distorted figure are 
55.776, 40.880 and 83.344. 

The lowest number of apices that produces Th 
symmetry occurs with N =  50; again, there are six 
points common to the mirror planes with four further 

points per mirror plane. These 18, together with the 
basic eight points, leave 24 points, equating to one 
unique apex with Th symmetry. 

Octahedral series 

The octahedral configurations were generally 
higher in energy than the tetrahedral arrangements 
with the same number of points. Systems with square 
facets (C = 0) would be expected to be energetically 
unfavourable; however, these prove to be global 
minima for both N = 24 and N = 48 but not for N = 
72. The global minimum for N = 72 is the I arrange- 
ment of potential 2255.00119, thus there are three 
configurations (Tarnai, 1990). The other icosahedral 
arrangements, i.e. N = 32, 42 and 92, can be forced 
into possessing tetrahedral symmetry by alteration of 
the ' a '  and 'b '  values as mentioned earlier. Together 
with the O arrangements in Table 5, these systems 
also display the three configurations; in fact, for N =  
42 the global minimum has a Dsh symmetry 
(Edmundson, 1992; Weinrach et al., 1990). 

The three systems, N = 38, 52 and 76, visually form 
a well defined progression. The N = 38 has distorted 

Fig. 3. Tetrahedral configurations for N = 72 to 98, with N = 74 and 96 not shown. The top two rows are views up the threefold axis 
whilst the bottom two rows are views down the threefold axis. 
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Fig. 4. Octahedral configurations for N = 26 to 98, with N = 74 not shown. 

capped hexagons with alternate edges having capped 
squares completely attached. For N = 5 2 ,  the 
hexagons and squares are now joined only via an 
apex, whilst, for N=  76, the two are no longer in 
contact. 

I thank the University of East London for the use 
of their HP7580B plotter. 

Note added in proof'. Erber & Hockney in a private 
communication have shown that the Ih configuration 
for N3 = 92 is not a global minimum. 
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